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CuO, plane of HTSO 
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Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow 117334, 
Kosygina 4, USSR 

Received 5 June 1990 

Abstract. The known three-band model of electrons in the CuOz plane of HTSO and the 
mean-field (MF) theory are used to classify the possible types of pairing and to find the 
contributions of all local interactions to the linearized MF Hamiltonian on the assumption of 
frozen lower bands. The on-centre interactions U, and Up on Cu dx2. 9 and 0 p orbitals, the 
Coulomb (Q) and exchange ( J )  interactions of adjacent p and d orbitals and the terms Kd 
and K ,  describing the correlated hopping are taken into account. The phase diagrams 
for transitions from normal state to each separate type of pairing (antiferromagnetic or 
superconducting) and solutions of self-consistent equations for the order parameters are 
studied numerically for various sets of parameters. The results show that, at certain doping 
after destruction of antiferromagnetic ordering, superconductivity might be expected at 
sufficiently large Kd and K,. This requires the condition Ed - &p < 0 for the renormalized 
energies of the Cu d and 0 p orbitals, i.e. the preferential occupation of the 0 site by holes. 
If Kd = K,  and their values are equal to about the p d  transfer integral t ,  then only the s 
type of superconductivity is possible whereas, for Kd = 0, K ,  = 1 .3 ,  only the d type of 
superconductivity is revealed for the models considered. 

1. Introduction 

Since the discovery of high-T, superconductivity [l] a great variety of different pairing 
mechanisms have been proposed, in particular those caused by local short-range attract- 
ive interaction [2]. However, the origin of the local attractive interaction has been 
unclear up to now. 

The aim of this paper is to elucidate the question of whether the short-range electronic 
interactions constituting the chemical bond energies could give rise to an anti- 
ferromagnetic (AF) or superconducting (sc) pairing of electrons in the C u 0 2  plane of 
HTSO? From this viewpoint, all local interactions of the electronic dXz-,,z, px and py 
orbitals of adjacent atoms in the C u 0 2  plane are classified and analysed in terms of the 
mean-field (MF) theory for the upper band in the known three-band model [3-71 of the 
Cu02plane on the assumption of two frozen lower bands. The main parameters of 
model have been discussed in [&12]. First the Hartree-Fock (HF) approximation is used 
to obtain the upper band parameters which vary with doping. 

The MF theory with the band approach is used, unlike the MF studies [13-151 of 
electron pairing in the Mott-Hubbard approach. A comparative discussion of both 
approaches has been given in [16]. The present study takes into account a more detailed 
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Figure 1. 

picture of interactions in system (and not only on-site and inter-site parameters) and it 
is similar to that in [17]. Oles and Zaanen [17] have studied AF pairing by the MF theory 
and by the Gutzwiller ansatz method and have demonstrated only a restricted accuracy 
of the MF theory. Nevertheless the extension and the MF classification of all types of 
interaction in problems and a numerical study of models may be instructive in searching 
for new ideas. 

Contrary to conventional opinion [2] the hopes for superconductivity may be con- 
nected with the correlated hopping interaction between all considered local interactions. 
Note that here we deal with the correlated hopping between the p and d orbitals instead 
of a similar effective hopping interaction between elementary sites. Moreover the 
existence of superconductivity depends crucially on E d  = &d - E ~ ,  i.e. on the difference 
between the renormalized energies of the p and d orbits. If E d  > 0 the holes populate 
the Cu sites preferentially and the AF state spreads over a large range of doping and 
suppresses the sc state. When E d  < 0 the AF correlations of spins on Cu centres weaken 
and the AF state on 0 sites is unlikely because of frustration of oxygen sublattice. 
However, there is a large region of doping when superconductivity can exist for our 
models at E d  < 0 and sufficiently large Kd and Kp. It may be of s or d type depending on 
Kd/Kp* 

2. The model Hamiltonian 

The known model [3-71 for the bands is based on Cu dx2-y2, 0 p, and 0 py orbits which 
correspond to the electron creation operators d i u ,  x i u  and The Hamiltonian of the 
model is 

H = Ho( to ,  E : ,  E : )  + V ,  + V ,  + V,  + vK (1) 
where H o  is the one-electron 'zero' Hamiltonian: 

H O  = + to 2 2 Cnm(d,+,xmnu - d i u y m u  + HC) 
0 (nm) 

The summation of (m, n)  is taken over nearest-neighbour Cu and 0 centres, i.e. m - n 
is equal to zero or e, or ey,  and Cmn = (-1)"-" if the signs of the orbitals are chosen as 
in figure 1; to, E:  and E :  are the 'zero' p-d transfer integral and orbital energies; Vu 
contains the one-centre Coulomb integrals and Up on atoms Cu and 0;  V ,  and V, 
correspond to the Coulomb and exchange integrals Q and J for the nearest-neighbour p 
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and d orbitals, V ,  describes the correlated hopping and provides dependence of actual 
p-d transfer integral on occupancy of these orbitals. V, and vk have the forms 

VK = -Kd fnm[(diudi-uxm-udnu + HC) - ( .  . * > , I  
( n m b  

- ~ p  E Cnm[(XiuXi-udm-uXnu + HC) - ( *  * * ),I* (3b) 
( n m P  

Here ( . . . ), denotes the same as the previous parentheses but fory operators. The signs 
of orbitals are chosen so that Kp, Kd and J are positive. The electronic representation 
(instead of the hole representation) is used here. 

The ordinary HF approximation to (1) leads to the Hamiltonian which coincides with 
Ho(t, E ~ ,  Ed) but with the replacement of the parameters to, E !  and E !  by the renormalized 
va!ues 

where Pd = (d,+,dnu), pp  = ( x , f , x n u ) ,  Ppd = fnm(xLudnu) are the average occupancies of 
the p and d orbitals and the bond order value for definite spin projection 0. The energies 
of the three bands (bonding, antibonding and dispersionless non-bonding bands) and 
the annihilation operators of the band states are 

~ 1 ( 3 )  = E -  p * V‘D’ + W’ E2 = E p  - p ( 5 )  

= N-1’2 C exp(-ikn)(dnu, xno,Ynu),Ajh j ,  A. = 1,2 ,3 .  ( 6 )  
n.o 

Here the upper band coefficients and parameters are 

Ai, = (C, i exp(-ik,/2)Ss,, -i e~p(-ik,/2)Ss,)~ 

E =  (&p f &d)/2 
s, = sin(k,/2) 

D = (Ep - &d)/2 w = 2tw 
(7) 

s y  = sin(k,/2) w = V‘s: + s; 
c = cos e S = (sin e)/w tan(26) = -W/D.  

If bands 2 and 3 are completely filled and only the upper band is partly occupied, 
then the self-consistent HF equations are 

1 

N k  
Pd = 1 - -E IAll 1*(1 - f l )  = h(p) - 2pp 

1 
Ppd = --E [Re(A,*,A1l)l(l - f l )  

N k  

2 
n(p)  = 6 --E (1 - f l )  = Nh + 5 

N k  

where n is a number of electrons on one site and Nh is the hole concentration associated 
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Table 1. Constants K and functions cp in the operators A; in equations (12) responsible for 
the SDW ( p  = 1, 2, 3) or CDW ( p  = 0)  for three different types of symmetry ( V  = 1-5 or 
v ~ 6 9 o r v =  1 0 , l l ) . q v = l f o r p =  1 , 2 , 3 ; q 0 =  - 1 ; A , = ( Q / 2 + S , o J ) ; F = C S ~ 2 ; F =  
F ( k ) ;  s = S ( k ) ;  C = C(k); B = w(k);f = s,c, (or sycy for v = 6’-9‘). The rest of the notation 
is defined in equations (7 ) .  

V KL 9); 

1 -q,u,j CC 6(6’) -qpUp iSsf 
2 -A, ( F +  q 7 ( 7 ’ )  -2A, i(CS + s C ) ~  
3 -A, i ( F - F )  8(8‘) -Kp/2 i(SC + SC + S s ) f  
4 -K, j /4  2CC-i- F + F  9(9’) Kp/2 i (SC + 3C - S S ) f  
5 K, /4  2CC- F -  F 10 -4 (SC - SC)(s? - s i )  

11 -4 i(SC + CS)(S; - s:) 

with doping;f, is the Fermi distribution function in the upper band. All HF calculations 
have been done at zero temperature. 

In the representation of HF states (6) the Hamiltonian (1) includes interactions 
between states inside each band as well as those with and between states of different 
bands. The main approximation of the present study consists in retaining all interactions 
inside the upper band and neglecting those with and between states of lower bands which 
are assumed to be frozen. In such an approximation the interaction depends only on the 
creation operators a la  of the upper band and takes the form 

where the matrix elements in (9) are calculated by the use of expansion (6). 

of term with large phase volume, namely those with 
Now the most general linearized Hamiltonian of the upper band contains three types 

(klk2k3k4) = { ( k ,  - k ’ ,  k ‘ ,  - E ) ,  ( k ,  - R I ,  - k ,  k ’ ) }  

or ( k ,  - k ,  - k ’ ,  k ‘ )  or ( k ,  k ,  k ’ ,  k’)  

in addition to the usual HF terms. Here the vector f is defined by 

R = ex(Jtkx/lk, I - k , )  + e,(nk, / lk ,  I - ky).  (10) 
Thus the obtained model interaction Vmod = V,, + V,, + V,, is 
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Table 2. Constants y and functions g in the operators r lM in equation (13) corresponding to 
scpairing: v = 1-7 or v = 8-10 for singlet pairing of s or d type; v = 12,12' for triplet pairing 
of p type. fd  = s: - s:. The rest of the notation is the same as in table 1. 

v IyY=o g:,o V :yS'=o gy=o $YY=, g:= I 

1 Ud/2 c2 8 s2fd 

2 Up/4 S2w2 9 Q - J csfd 

3 Q - J  CSW' 10 -Kp/2 (s2 + cs) fd 

4 - K , / 2  2C+ CSw2 11 Kp/2 (s2 - cs)fd 
5 K,/2 2 C  - CSw2 
6 -Kp/2 ( S 2  -+ CS)w2 
7 Kp/2 (S2  - CS)w2 12(12') 2(Q + J) CSs,c, 

sums over p, v ,  S, M o r  over k or over o,d correspondingly. The constants K and y and 
weighting functions Q, and g are given in tables 1 and 2. The similar values c and x 
have been obtained. The reduction of Hmod to a separable form (11) follows from the 
properties of operators t, r, z discussed in appendix 1. 

The first term in equation (10) (see table 1) refers to a possible spin-density wave 
(SDW) with polarization p ( p  = 1,2 ,3)  if the corresponding real order parameters (OPS) 
- At; = (At;) are non-zero. At p = 0 the real OP 4; corresponds to a charge-density wave 
(CDW) with a double volume of the elementary site. Depending on the symmetry of 
function Q, in (11) the OP means the alternation of the spin density ( p  = 0) or the 
charge density ( p  = 0) on copper ions (v = 0) or on oxygen ions ( v  = 6,6 ' )  or on the p 
d bonds or corresponds to the state of the orbital antiferromagnet with charge (or spin) 
currents of some symmetry. Note that the relation Up < and degeneracy of the SDW 
on oxygen connected with frustration of the oxygen sublattice make the AF ordering of 
spins on oxygen sites less probable than on Cu sites. The properties of the operators 
A; and interpretation of the corresponding real OPS At; = (At;)* are discussed in appen- 
dix 2. 

The second term in (10) is responsible for the sc pairing in the singlet ( S  = 0) or 
triplet (S = 1) states if the corresponding OPS & = (r;,) = 0. The symmetry of the 
functiong(k) in (13) determines the s, p or d type of pairing. The third term in (10) refers 
to the alternating anomalous averages (AAS) (a:ua:u,) - (- l ) " x + " ~ .  

The results in tables 1 and 2 allow us to choose the possible types of pairing (which 
is expected to give a positive energy gain) and to elucidate the role of each type of 
interaction in the corresponding pairing. If only the Coulomb interactions V u  and V ,  
are taken into account, then only AF pairing can be energetically favourable, but not 
CDW or sc pairing which have all positive constants K or y in this case. However, at 
sufficiently large values of the correlated hopping contributions (-Kd, K,) or of 
exchange integral J the resultant effective constants K,  y ,  c can also become negative. 
This refers to CDW on oxygen ions or on p d  bonds ( p  = 0, v = 6-9 or p = 0, v = 10-11 
in table 1) or to the singlet sc pairing of s or d type ( v  = 1-7 or v = 8-10 in table 2 ) .  For 
instance, if cp = &d and the upper band is half populated, then D = 0, C = l/d2, 
S = 1/ V? w - l/V? near the 2~ Fermi surface and the resultant effective constants 
for sc s or sc d pairing are estimated as [18] 
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with gtff = 1 and gzf f (k)  = s: - s:. If one uses the values (15) for D, t ,  U,, Up and Q 
estimated in [8] and sufficiently large values of the rest of the parameters Kd = Kp = t ,  
J = (0-1.8)t, then yzff = -(0.15-0.55) eV and yzff = -(0.1-0.6) eV. 

3. Linearized Hamiltonian and self-consistent equations for the order parameters 

A Hamiltonian for the upper band &(k) = El(k) in equation (6) together with the retained 
model interaction (11) 

H = HI + Vmod Hl = [ E ( k )  - p l a ~ u a k o  (15) 

can be transformed directly to the corresponding linearized Hamiltonian of general 
form: 

Here& = (A ;) are the set of the real ops corresponding to the averages of the Hermitian 
operators A ,  and = ( r ; M )  and ZIM = (Z;,) are generally complex OPS. The con- 
stant CL in (16) is 

Use the standard method to find the spectrum E,(k) and the structure of quasi- 
particles for the Hamiltonian HL and close self-consistent equations for OPS. The creation 
and annihilation operators P: ( k ) ,  P,(k) of quasiparticles obey the equations 

and are constructed as a linear combination of operators a : ! ,  aka. The number of terms 
in the expansion depends on number of operators A ,  r, Z in HL. Ingeneral, if all OPS in 
HL are non-zero, the commutation of HL with a:? , for example, generates eight oper- 
ators which may serve as a basis set for the expansion of P,(k), A = 1-8. Then the number 
of independent vectors k is reduced by a factor of 4 when the spin doubling of the original 
operators ako  is taken into account. 

For simplicity we consider the situation with one type of SDW polarization p = 3 and 
with one projection M = 0 of anomalous OP in (16). Then Ph(k)  is expanded on the basis 
of four operators {ak a-k a f k  1 a l l  } which for uniformity will be called the new oper- 
ators bj(k):  

The full set of such independent operators can be obtained if the vector k varies in half 
of all the phase volume. For instance let kvary in the 2~ region of volume Fcorresponding 
to filled states in the half-populated original band (see figure 1). 
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Then H L  takes the form 
4 

The equations for the Hermitian matrix L , ( k )  via the weighting functions and OPS are 
given in appendix 2. Substituting equations (19) and (20) into (18) yields 

Ll, U,, ( k )  = - U,, @)EA ( k )  (22) 
which determine the spectrum E,(k)  and the unitary matrix U,, of coefficients in (19). 

diagonal in the quasiparticle numbers are 
Now the averages of any product of operators over the Gibbs ensemble of states 

(b: (k)b,  ( k ’ ) )  = 8 k k ’  U,/ f /u$  

f, = (1 + exP[-PEdk)I}-’. 

(b: (k)b: (k’ ) )  = (b,(k)b,(k’)) = 0 (23) 

(24) 
Similar averaging of the operators A , ” ,  A;,  r;o, ZF0 after reducing to the form 
(A13)-(A15) leads to the following self-consistent equations: 

When there is one type of pairing equations (25)-(27) reduce to standard equations. 
The energy gain as a result of ordering is equal to the difference between the energies 

of the normal state ( N )  and the ordered states of the upper bands with the parameters 
(8) obtained first from solution of the HF equations (8) at fixed Nh: 

AH = H, - (HL) HN = N - ’  x [W - Plf ( E  - P )  (30) 
k o  

, 
(HL) = N - ’  E A  ( k )  + CL = N - ’  2 C, ~(k j )q jT j j  - CL (31) 

A k E F  j k E F  

{ k , }  = { k ,  -,G, - k ,  R }  j =  1, .  . . ,4. (32) 
Before solving the self-consistent equations for the OPS it is of interest to understand 

the nature of each of the three types of ordering (4, and 2). This can be done by 
model calculations of the coefficient QM = lim( j ,/A,) at q -+ 0 which is indicative of the 
Meissner effect (here j q  and A ,  are the Fourier transforms of the current and the vector 
potential of field). Model calculations using equations (A18), (A24) and (A25) in 
appendix 3 for a system with one type of non-zero OP show the following. For the AF 
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state, Q M  is equal to zero as typical for the normal state; for sc pairing, QM < 0 as one 
expects for the sc state; Q M  > 0 for the AA OP which means apparently that the state with 
A A  OP is unstable with respect to rearrangement to CDW or SDW states. Therefore we 
omit terms with Z operators in our further considerations. 

4. Results of the numerical study 

The starting point in choosing the parameters was the requirement of a small difference 
I &d - &,I < t of renormalized HF energies for the half-filled upper band, i.e. similar 
energies of configurations with one hole in Cu or one hole in 0 sites. This is a reason to 
apply the band approach although one expects only a qualitative picture rather than 
quantitative results by this method since it does not remove the high-energy double-hole 
configurations in Cu sites. Some indication of the accuracy of the band approach is 
provided by a comparison [ 171 of the results of AF studies of the C u 0 2  plane obtained 
by a MF band calculation with those obtained by a Gutzwiller ansatz method. Both 
methods yield qualitatively similar phase diagrams, although the MF method gives 
enhanced values of the energy gap and the critical doping destroying the AF ordering. 

The original set of parameters for the present 2D calculations taken from [9] are 

t(Nh = 0 )  = 1.3 eV Q = 1.2eV Ud = 10.0eV U ,  = 4.0 eV (33) 

together with &d - E,  = 1.2 eV [9] at Nh = 0. Our study is extended also to cases with 
Ed - E ,  < 0 since these models reveal an explicit region of superconductivity. So 

(Ed - E , ) , , , ~ = ~  = -2 - 1.2eV. (34) 

Other key parameters can be evaluated as Kd, K, = t ,  J - t 2 /Z  where Z = 
The main calculations are done for 

+ 4 / 2 .  

Kd 1 K, t J = O  (35) 

Kd - 0  K, at J = 0. (36) 

or 

The calculations also incorporate the reduced values (ud, U,) = (8.0,3.2) eV as well as 
(10.0,4.0) eV. The aim of such testing is to compensate the known shortcoming of the 
MF theory which overestimates the role of large interactions. 

Table 3 presents some of the sets of parameters used as well the values of the ‘zero’ 
parameters E : ,  E:  and to corresponding to chosen values of t and &d without doping. 
Here we set E ,  = 0 at Nh = 0.  The condition I Ed - - t leads to large value of 

Figure 2 presents some typical dependences of the renormalized parameters t and 
E d  = Ed - E ,  of the upper band upon the hole concentration Nh = 5 - ne associated with 
doping. They have been obtained by solution of the HF equations (5)-(8) at fixed 
E : ,  E :  and to determined by Ed, t at Nh = 0.  The variation in Ed with doping plays an 
important role. When all other parameters are kept equal, the holding of E d  constant 
leads to an extension of the AF phase region and the disappearance of the sc region. 

As a first step the phase diagrams have been studied for transitions from the normal 
state (N) to each of the states with one separate type of pairing (AF or sc s or sc d). The 
dependences T,(Nh) of the transition temperature upon doping for each type of pairing 
have been obtained from the equations 

I E $  - E ;  1 .  
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Table 3. Some variants of the parameters used in calculations together with the values for 
t(& = 0 )  = 1.3 eV, Q = 1.2 eV, J = 0.0 eV. We set the renormalized energy of the p orbital 
as E ~ ( N ~  = 0) = 0 eV; thus E !  and E: are measured from ~ ~ ( 0 ) .  

Ed(Nh=O) ud u p  Kd Kp E !  E ;  t o  
No (eV) (ev)  (eV) (ev)  (ev)  (ev)  (ev)  (ev)  

1 1.2 

2 0.0 
3 0.0 

4 -1.0 
5 -1.0 

6 -1.0 
7 -1.0 

8 -1.3 
9 -1.3 

10.0 4.0 1.3 1.3 -15.9 -7.7 3.21 

10.0 4.0 1.3 1.3 -17.4 -7.9 3.24 
8.0 3.2 1.3 1.3 -15.9 -7.2 3.24 

10.0 4.0 1.3 1.3 -13.6 -8.0 3.26 
8.0 3.2 1.3 1.3 -17.0 -7.3 3.26 

10.0 4.0 0.0 2.0 -17.1 -8.4 2.84 
10.0 4.0 0.0 2.2 -17.1 -8.5 3.00 

10.0 4.0 0.0 2.0 -17.5 -8.4 2.82 
10.4 4.0 0.0 2.2 -17.5 -8.5 2.99 

2.00 

2 

Figure 2. Dependences of the band parameters 
&(Nh) = Ed - (curves 1-4) and t(Nh) (curves t )  
on the hole number N = Nh obtained from solu- 
tions of the HF equations (8) for some variants of 
theparametersfrom table3 ( t (Nh  = 0) = 1.3 eV): 
curves 1 , 2 , 3  and 4, &(Nh = 0) equal to 1.2,0.0, 
-1.0 and -1.3 eV, respectively; -, U, = 
1 0 e V , U p = 4 e V ; - - - , U d = 8 e V , U p = 3 3 . 2 e V .  
The other parameters are from table 3. The p-d 
transfer integral depends slightly on the par- 
ameters chosen. 

1 

Figure 3. The ‘zero’ phase curves for AF to N and 
sC s to N transition for variants 2 and 3 of the 
parameters from table 3 (Ed(Nh = 0) = 0.0 eV; 

10 eV, Up = 4 eV; ---, Ud = 8 eV, U ,  = 3.2 eV. 
The other parameters are as in table 3. 

K d = K p = f ( N h = 0 ) = 1 . 3 e V ) :  - 3 Ud = 

det(DYYI) = 0 D’,,’ = a,,,,, - dAu/dA”’ at A’ = O  (37a) 
or 

D~~~ = &,,, - d r  ./ar at r”  = 0. (37b) 
Here v = 1-5 for A ”  = A; from table 1 for the N-to-AF transition and v = 1-7 or 
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0.60 

> 0.40 s \ 
\ 

0 
k 

0.00 0.40 0.00 
N 

Figure 4. The same as in figure 3 for variants 4 
and 5 of parameters from table 3 (&(Nh = 0 )  = 
-lev):- ,Ud= 10eV,Lip=4eV;--- ,Ud= 
8 eV, U,  = 3.2 eV. The other parameters are as 
in table 3. The solution for the ‘zero’ N-sc d boun- 
dary exists only for U, = 8 eV and Up = 3.2 eV 
but lies entirely inside the AF or sc s region. 

O’*O 1 

al0.20 > 0.30fi 
0 

I- 

O 

0 

N 

Figure 5.  The ‘zero’ phase boundaries for the AF- 
to-Nandsc-d-to-N transitionsfor variants8 (-) 
and 9 (---) of the parameters from table 3 

10eV; U p = 4 e V ;  Kd=OeV): -, K,= 
2.0 eV; ---, Kp = 2.2  eV. The sc S-N boundary 
appearsonlyat K, > 2.1 evbutliesentirelyinside 
the AF region. 

(Ed(Nh = 0)  = - t (Nh = 0 )  = -1.3 eV; Ud = 

v = 8-11 for r” from table 2 for the N-to-SC s or N-to-SC d transitions. The derivatives in 
(38) are calculated directly as 2D integrals over the phase region F/8 = n2/4 owing to 
symmetry of the integrand. Some inaccuracy of the phase curves at high temperature may 
be connected with the simplifying assumption that the band parameters are functions of 
the low-temperature hole concentration instead of the actual concentration. This does 
not disturb the low-temperature parts of the boundaries. 

Figures 3-5 present examples of such phase diagrams for the sets of parameters given 
in table 3. At Ed = 1.2 eV > 0 the N-SC s boundary can occur partly outside the AF region 
only for very small Coulomb integrals u d  and U,  reduced to values of 5.1 eV and 1.3 eV. 
However, at E d <  0 there is a doping region where the SC-N boundary can be 
partly outside the AF-N boundary even for large Coulomb integrals u d  and U, if the 
parameters Kd and K ,  of the correlated hopping interaction are sufficiently large. 
Depending on the relation between Kd and K,, superconductivity of s type occurs if 

If Kd = K, = t the sc s phase exists as one can see in figures 3 and 4 for Ed = 0, 
u d  = 8 eV, Up = 3.2 eV, and for Ed = -1.0 eV, u d  = 10 eV, U, = 4.0 eV. The N-sc d 
boundary lies entirely inside the AF region if it does exist. An increase in the exchange 
interaction up to J = 2 eV leads to extension of the ‘zero’ N-sc d boundary but it is 
insufficient to create the sc  d phase at Kd = Kp = t .  A reduction in both the parameters 
Kd and K ,  markedly shortens the range of the sc  s solution. 

The situation is reversed at Kd = 0, K,  > t. The ‘zero’ N-sc s boundary disappears at 
K ,  < 2.1 eV, but there is a large sc d region after destruction of the AF order. Figure 5 
demonstrates this phenomena for Ed = -t = -1.3 eV, Kd = 0 and K ,  = 2.2  eV (full 
curves) or K,  = 2.0 eV (broken curves). Other parameters are as in (34). 

Kd K ,  2: tor of d type if Kd K ,  41 1.5t. 
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Figure 6. The most representative order par- 
ameters as functions of the hole concentration: 
&=‘(Nh) determined from equation (25) and 
table 1 for the AF solution and deter- 
mined from equation (26) and table 2 for the sc s 
solution for variants 4 (-) and 5 (---) from 

0 )  = 1.3eV): - , U d =  lOeV, U P = 4 e V ;  
--- , U, = 8 eV, U, = 3.2 eV. The index v in & 
or r’enumerates the OP according to table 1 or 2. 

table3 (Ed(Nh = 0)  = -1 .o eV; Kd = K p  = I(Nj, = 

N 

Figure 7. The energy gain during AF or sc s 
ordering, i.e. the difference AH in equation (30) 
between the energies of the band state and self- 
consistent MF state with corresponding ordering 
for variants 4 and 5 of the parameters (&(Nh = 

Ud=lOeV, U p = 4 e V ;  ---, Ud=8eV, U p =  
3.2 eV. 

0 )  = -1.OeV; Kd = K ,  = t(0) = 1.3 ev):  -, 

The reality of the ‘zero’ phase diagram or more exactly of the correct boundaries of 
the N phase is confirmed by the solutions of the self-consistent equations (25)-(28) for 
OPS. The iteration procedure for finding the OP works only at a fixed number of particles 
but not at a fixed chemical potential. Sequential values of the OP converge to the OP 
values of ‘pure’ solutions corresponding to only AF or only sc ordering (but not mixed 
ordering) or to zero for the N state. Thus the general solution can be obtained by finding 
both ‘pure’ solutions and choosing one of them with minimal energy. This accelerates 
the calculations and allows one to overcome the problem of slow convergence of the 
iteration procedure near the switching point between AF and sc phases. 

Some characteristics of AF and sc solutions at T = 0.005 eV = 58 K are presented in 
figures 6 1 0  for various sets of parameters. The most representative OP and 
E&=‘ for sc s or E&= for sc d are shown in figures 6 and 9. A A :-value of 1.5 corresponds 
to a local magnetic moment on Cu of (0.3-0.4)~~ instead of the observed value of 0 . 6 ~ ~  
[2,12]. The difference may be connected with the approximation of frozen lower bands. 

The energy gain during the AF or sc s ordering as a function of Nh is given in figure 7 
forEd = -1.0 eV, Kd = K p  = t .  Itisobtainedbyuseofequations(30)-(32).Thecrossing 
of the AF and sc curves is the point of switching of solutions. The energy gain during sc 
d ordering (e.g. at Ed = -1.3 eV, Kd = 0, K p  = 2.0 eV) is significantly less than for sc s 
in figure 7. The range of doping where the sc solution has the lowest energy correlates 
quantitatively with the part of the ‘zero’ SC-N phase boundary outside the region of AF 
ordering. The energy gaps G for the AF and sc solutions are demonstrated in figures 8 
and 10. 
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2.50 

1.50 , 

Figure 8. The gap in the energy spectrum as a 
function of N = Nh for the AF and sc s solutions 
forvariants4(-) and5 (---) of the parameters 
from table 3 (&(Nh = 0) = -1 eV;  Kd = K, = 
t (Nh = 0) = 1.3eV):  -, U, = lOeV, U ,  = 
4 eV; ---, Ud = 8 eV,  Up = 3 eV. The gap is 
independent of the k direction. 

Figure 9. The most representative parameters 
Ai(Nh) of the AF solution and r i ( N h )  of the 
sc d solution for variant 9 of the parameters from 

U, = 10 eV; U, = 4 eV; Kd = 0 eV, Kp = 2.0 eV). 
The upper index in the A” or enumerates the 
OPS according to table 1 or 2. r#(N) multiplied by 
ten is also shown 

table 3 (Ed(Nh = 0)  = -t(Nh = 0) = -1.3 eV; 

1 .so 

1 .oo 
> 
Q, 

Figure 10. The gap in the energy spectrum for 
the AF solution as a function of N = Nh and the 
maximal value of the energy gap for the sc d 
solution in the direction k, = ky for variant 8 of the 
parameters from table 3 (&(Nh = 0) = -1.3 e v ,  
U d = l O e V ,  U , = 4 e V ;  K d = O e V ,  K p =  
2.0eV). The sc d gap multiplied by ten is also 
shown. 

In comparison with the s type of superconductivity at Kd = K ,  = t = the d type of 
superconductivity at Kd = 0, K p  > t seems more plausible (if at all) for a description of 
the real system for the following reasons. 

(i) It corresponds to the more realistic, relatively small scale of T, and of the energy 
gap, contrary to sc s. However, for both sc s and sc d the MF approach gives the ratio 
G/kTc < 1 instead of the experimental values of 2.4-8 (see [2]) and the BKS prediction 
of 3. 
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(ii) Similar values of Kd and K ,  for such different sites as Cu and 0 are hardly 

(iii) Strong correlations of eletrons on the Cu site can suppress the influence of first 
probable. 

term in the correlated hopping interaction (3b)  depending on the Cu occupancy. 

5. Conclusions 

In the framework of the MF theory applied to the upper band of the well known three- 
band model the possible types of pairing are classified and the contributions of various 
local interactions to the corresponding ordering are given in tables 1 and 2. MF cal- 
culations indicate possible superconductivity which is responsible for the local inter- 
action V ,  - Kd, Kp of correlated hopping between Cu and 0 centres. The sc solution 
appears only at Ed = Ed - E,  < 0, i.e. in case of preferential occupation of 0 sites by 
holes and it can be of s type for Kd = Kp = to r  of d type at Kd 4 K,  = 1.3. The range of 
doping with superconductivity follows the region of AF ordering but solutions with the 
coexistence of AF and sc regions have not been found. 

If the models considered have any relation to the actual mechanism of super- 
conductivity, then many problems must be solved. 

(i) Independent evaluation of the correlated hopping integrals and establishment of 
their signs are needed. 

(ii) The relative energy Ed = &d - E,  of the d orbit must be more exactly estimated. 
(iii) The assumption of frozen lower bands in the MF approach must be discarded and 

the electronic correlations beyond the MF theory must be considered. 
(iv) The possibility of the coexistence of sc d and AF ordering with other types of 

ordering such as SDW of orthorhombic 'p' symmetry which provides variation in the 
energy gap of the AF state must be studied. 

(v) The overlap between the p orbitals in the model must be included. 

Appendix 1. Properties of the operators tp, rsM, zsM, A, I?, 2 and interpretation of the 
corresponding ow 

The separable form of the first term in the model interaction (11) 

is a consequence of the relations for the Pauli matrices 

To reduce equation (Al) to a similar form with Hermitian operators A; we use the 
relation 

tJ-R) = t p )  (A31 
and rewrite D (we omit indices for the moment) as a sum over k ranging through half 
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the phase volume F inside the 2~ Fermi surface of the half-filled upper band (broken 
region in figure 1) : 

D = [@(k)t,(k) + @(-R) t : (k ) ]  
k E F  

Here q + ( k )  = [@(k) + @ ( - k ) ] / 2 ,  q - ( k )  = i[@(k) - @ ( - k ) ] / 2 .  Then DD' = A t  + 
A? where A = X k ~ * ( k ) t p ( k )  correspond to weighting functions with definite sym- 
metry 

~ , ( - k )  = q*(k).  (A4) 
Table 1 summarizes such functions corresponding to the real OP A ; . 

To interpret these quantities we compare them with the spin densities p,(d, n ) ,  
pp(x, n ) ,  p p ( y ,  n)  or with the total densities 2p, (a ,  n ) ,  a = d, x ,  y of the band electrons 
on d , 2 ~ ~ 2 ,  p, or py orbitals of the nth site: 

Here averaging is over the upper band state with all possible collective orderings in 
accordance with the basic assumption of frozen lower bands. 

In a lattice with the AF or CDW doubling of an elementary site, each of the quantities 
in (A5) has the form 

n 

In the quasiparticle approximation with the linearized Hamiltonian (16), calculations 
yield the connection of quantities (A6) with the AF OP: 

App(d)  = &"/IC: A&) = A;/.; APp(Y) = A y K : '  ('47) 

The upper index in A; enumerates the corresponding weighting functions in table 1. 
Similarly one can define the extended bond order pj,(n), i.e. the spin density ( p  = 

1,2,3) or total density 2pjo(n) of each of four Cu-0 bonds j = 1 , 2 , 3 , 4  of the Cu centre 
of the nth site: 

E ( u p )  uu'(dn+oxnu' + xiudnu,) j =  1 
(A8) 1 -E u'' (Op)uu'(dnuynu' + Yn+odnu,) j = 2 etc. 

P j p  (n)  = 

uu' 

Symmetric combinations of the bond densities after the separation of alternating parts 
-(-l)n correspond to the OPS from table 1: 

Plp - P2p + P3p - P4p + Ab0 - p 3 p ]  + A;(7') 
P P2p - P4p 

One can also construct various combinations of the spin or charge currents within 
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the elementary site which alternate with n and correspond to states of the orbital 
antiferromagnet if ,A: or ,Ah’ is non-zero or to more complicated structures. 

Separability of the anomalous parts of the model interaction (11) over S ,  M and the 
symmetry of the r and z operators given by 

r s d - 4  = (-I>“TSM(k) Z S M ( R )  = ( - l ) szsM(k)  (A91 

follow from symmetry and the orthogonality properties of the Clebsch-Gordon coef- 
ficients. Because of equation (A9) the singlet pairing corresponds only to even weighting 
functions and the triplet pairing only to odd functions: 

g h ( - k )  = ( - 1 ) ” b d k )  x h f ( R )  = ( -1YXhf(k) .  

This accounts for the arrangement of the weighting functions x over S in table 2. 

Appendix 2. Linearized Hamiltonian 

The operators of the number Nh = 5 - ne of holes and the band energy are expressed 
via operators bj (see equation (20)) in the following way: 

To find L,in (21) it is sufficient to rewrite A ,  r, Zvia the operators bj defined by equation 
(20): 

z:o = CY E [ X : ( - R ) b w ) b 2 ( k )  + x:(k)bi(k)bI(k)l. 
k E F  

Substituting equations (A13)-(A15) into equation (16) and comparing with (21), one 
finds the elements L, of the Hermitian matrix: 

L,j = qj[&(kj) - P I  L21 = x A;qI;(k) L 3 1  = 2 c,”OgY ( k )  
U P  us 
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Appendix 3. Coefficient QM indicative of the Meissner effect 

To calculate the coefficient QM it is sufficient [19] to find ( j q )  to second order in A(r) :  

Q M  = Q I  + Q I I ~  ( A W  

Here m are the states of system diagonal over the number of quasiparticles and F(m) is 
a distribution function over these states, H(') and H(') are the terms of first and second 
order in the expansion of the electronic Hamiltonian H A  = E, ~ ( k  - e/cA)ak+,aku in the 
field A(r) = Eq A ,  exp[iqr]. At q + 0 they are 

e' H ( 2 )  = - (AqV)(AqfV)&(k)a'(ka)a(k + q + q ' ,  0). 
c2 kqq' 

H(') can be represented via the quasiparticle operators as 

wil= C qj(u+)njvi&(kj)uj/ (A221 

{kj} = {k, - R ,  -k, R }  qj = {1,1, -1, -1} j =  1,.  . . , 4 .  (A23) 
Each operator ,6 (k- )  and Pn(k+) from (A21) contributes to (A17) only for states m in 
(A17) with occupation numbers n/(k-) = 1, nn(k+) = 0 so that 

Here Fo is an insignificant isotropic term, fL is the Fermi function, f; = df,/d E/ and F 
refers to the occupation numbers for momenta other than k,, k - .  It has a value of unity 
after summation. Thus the first term in (A18) is 

The second term in (A2) is equal to 

It is easily verified that, if all OPS are zero, then QM = Q, + QII = 0 for arbitrary zone 
dispersion at any occupancy of the band. 
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Note added inproof. As has just become known to us, I O  Kulik [20] and J E Hirsch and co-workers [21-241 
have suggested and elaborated upon similar ideas about the mechanism of sc caused by the correlated hopping 
interaction (CHI). Many important results have been obtained [21-241 for models described by effective on- 
site and inter-site parameters. In a more detailed picture [20] the sc is caused by the CHI connected with direct 
hopping between p orbits of 0 sites. Based on a physical argument about the increase in the orbit size during 
its occupation I O  Kulik chooses the sign of the p p  CHI such that the effective p p  transfer integral increases 
with occupation of these orbits. In terms of the upper band states spanned on our basis differing from [20] we 
verify that it is indeed the sign of the p p  CHI that is needed to provide the possibility of SC. This differs from 
our p d  CHI for which attractive effects in sc are achieved when occupation of p or d orbits reduces the effective 
p d  transfer integral. It is very interesting to include the p p  CHI in MF calculations. 
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